Ventricular arrhythmia vulnerability in cardiomyopathic mice with homozygous mutant Myosin-binding protein C gene.
نویسندگان
چکیده
BACKGROUND Homozygous mutant mice expressing a truncated form of myosin-binding protein C (MyBP-C(t/t)) develop severe dilated cardiomyopathy, whereas the heterozygous mutation (MyBP-C(t/+)) causes mild hypertrophic cardiomyopathy. Adult male MyBP-C(t/t) and MyBP-C(t/+) mice were evaluated for arrhythmia vulnerability with an in vivo electrophysiology study. METHODS AND RESULTS Surface ECGs were obtained for heart rate, rhythm, and conduction intervals. Atrial, atrioventricular, and ventricular conduction parameters and refractoriness were assessed in 22 MyBP-C(t/t), 10 MyBP-C(t/+), and 17 wild-type MyBP-C(+/+) mice with endocardial pacing and intracardiac electrogram recording. Arrhythmia induction was attempted with standardized programmed stimulation at baseline and with isoproterenol. Heart rate variability and ambient arrhythmia activity were assessed with telemetric ECG monitors. Quantitative histological characterization was performed on serial sections of excised hearts. MyBP-C(t/t) and MyBP-C(t/+) mice have normal ECG intervals and sinus node, atrial, and ventricular conduction and refractoriness. Ventricular tachycardia was reproducibly inducible in 14 of 22 MyBP-C(t/t) mice (64%) during programmed stimulation, compared with 2 of 10 MyBP-C(t/+) mice (20%) and 0 of 17 wild-type controls (P<0.001). Ventricular ectopy was present only in MyBP-C(t/t) mice during ambulatory ECG recordings. There were no differences in heart rate variability parameters. Interstitial fibrosis correlated with genotype but did not predict arrhythmia susceptibility within the MyBP-C(t/t) group. CONCLUSIONS MyBP-C(t/t) mice, despite prominent histopathology and ventricular dysfunction, exhibit normal conduction and refractoriness, yet are vulnerable to ventricular arrhythmias. Somatic influences between genetically identical mutant mice most likely account for variability in arrhythmia susceptibility. A sarcomeric protein gene mutation leads to a dilated cardiomyopathy and ventricular arrhythmia vulnerability phenotype.
منابع مشابه
Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice
To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in hum...
متن کاملUnique and shared functions of different connexins in mice
BACKGROUND Connexins are the protein subunits of intercellular gap junction channels. In mammals, they are encoded by a family of at least 15 genes, which show cell-type-specific but overlapping patterns of expression. Mice lacking connexin43 (Cx43) die postnatally from obstruction of the right ventricular outflow tract of the heart. To discriminate between the unique and shared functions of Cx...
متن کاملMyosin VIIA is required for aminoglycoside accumulation in cochlear hair cells.
Myosin VIIA is expressed by sensory hair cells and has a primary structure predicting a role in membrane trafficking and turnover, processes that may underlie the susceptibility of hair cells to aminoglycoside antibiotics. [3H]Gentamicin accumulation and the effects of aminoglycosides were therefore examined in cochlear cultures of mice with different missense mutations in the myosin VIIA gene,...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملRemodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 104 22 شماره
صفحات -
تاریخ انتشار 2001